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Abstract 
 
Landfill gas (LFG) needs to be efficiently and effectively extracted from active and closed 
landfills to comply with air quality regulations as well as to fuel beneficial uses. LFG extraction 
is performed by applying a vacuum onto vertical wells or horizontal collection trenches. LFG 
collection trenches are commonly constructed by excavating into the waste mass and backfilling 
the trench with aggregate and a perforated high-density polyethylene (HDPE) pipe. While LFG 
collection trenches are an important component to a well-operated landfill, the costs associated 
with constructing trenches and relocating waste are significant. This paper presents a review of 
tubular drainage geocomposite used for more than 5 years in replacement of traditional pipes and 
aggregates LFG trenches. The use of this geocomposite improves the zone of influence (ZOI) of 
the “trench” without reducing the collected flow, as well as reduces dramatically the costs and 
the Greenhouse gas (GHG) emissions. 
 
INTRODUCTION 
 
Landfill gas (LFG) is produced during the decomposition of putrescible material in landfills.  
Often referred to as biogas, LFG is a source of odors and greenhouse gases.  LFG is typically 40 
to 60 percent methane which is a greenhouse gas that has 25 times more of an impact on climate 
change than carbon dioxide (USEPA 2013).  LFG must be removed from the landfill to reduce or 
eliminate odors, to limit the migration of methane to the atmosphere and to comply with 
regulatory requirements. 

The management of LFG at landfills is an important, and often costly, operational aspect 
of a well-run landfill.  The need to install a gas collection and control system (GCCS) is 
dependent on the amount and type of waste accepted.  Typically, LFG is controlled by an active 
gas system which extracts LFG by applying a vacuum to a network of collection wells and 
trenches into the waste.  In an active system, LFG is collected and sent to a destruction device, 
such as a flare, where it is combusted and the methane is converted to carbon dioxide.  Because 
of the energy potential of the methane gas, landfill gas-to-energy (LFGTE) projects have been 
developed to capitalize on the “man-made” “green” fuel source.  In general, LFGTE projects use 
the LFG to fuel specially designed turbines, reciprocating engines, or boilers.  LFGTE projects 
can have design lives in excess of 20 years and range in size from a few kilowatts to 10 
megawatts or more.  Also, LFG can be processed into a compressed gas for vehicle use. 

Geotechnical Frontiers 2017 GSP 276 488

© ASCE



The success of a LFGTE project is directly related to the performance of the GCCS.  
Traditional methods of LFG collection can be time consuming and expensive to install, and 
installation sometimes can be delayed due to seasonal and budget issues.  This paper presents a 
review of the use of tubular drainage geocomposite (minitube blanket) for horizontal LFG 
collection into the waste mass during landfill operation. 
 
MINITUBE BLANQUET DESCRIPTION AND INSTALLATION 
 
In order to clarify, as this technology differs from more common solutions, it is important to 
describe first the product to be used.  The minitube blanket is comprised of 25 mm (1-inch) 
corrugated polypropylene perforated pipes spaced on 250 mm (10-inch) centers between two 
non-woven geotextile layers (Figure 1). 
 

 
Figure 1: Minitube blanket description. 

 
Tubular drainage geocomposites have been used in landfill applications over the world 

for 25 years.  An important characteristic of tubular drainage geocomposites is that they maintain 
their transmissivity under significant normal stresses (Saunier, et al. 2010) because they don’t 
experience geotextile intrusion into the primary high-flow component.  Therefore, for most of 
the applications, the applied combined reduction factors for tubular drainage geocomposite are 
almost half of those applied to standard geonet geocomposites (Maier and Fourmont, 2013).   

A roll is typically 4 m (13-ft) wide and it replaces a 0.9 m (3-ft) wide by 2 m (6.5-ft) deep 
trench filled with aggregates surrounding a 150 mm (6-inch) diameter perforated HDPE pipe. 
Common spacing between horizontal LFG collectors is about 15 to 30 m (50 to 100-ft) 
horizontally and 9 to 12 m (30 to 40-ft) vertically. 

The minitube blanket is unrolled directly on the waste (Figure 2) and connected to a 
collector pipe using connectors specially developed to fasten the pipes from the composite to the 
collector pipe (Figure 3). 
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Figure 2: Minitube blanket installation. 

 

 
Figure 3: Connection of the minitube blanket to the collector pipe. 

 
Due its limited thickness and its low hydraulic conductivity contrast with the surrounding 

waste, the minitube blanket network won’t modify the leachate flow into the waste mass and 
won’t concentrate it as a large trench network would.  Nevertheless, some specific measures will 
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be taken to manage the condensates (gradation of the support with a slope away from the 
manifold, condensate drain at one end of the manifold, etc.). 

Waste are directly placed over the minitube blanket (Figure 4).  A minimum of 1 m (3-ft) 
of selected waste, should be placed on top of the geocomposite prior to operating a compactor 
over the area.  The size and weight of the waste compactor as well as the length of the compactor 
teeth should be considered when designing the thickness of the initial waste layer over the 
minitube blanket. 
 

 
Figure 4: Backfilling with waste. 

 
IN PLACE BEHAVIOR 
 
For horizontal LFG collection, the flow and the head loss in the minitube blanket are governed 
by the minitubes (the head loss in the geotextile layers being negligible).  In a first stage, the 
Low-Pressure Muller equation can then be used because the pipes of the geocomposite follow 
the same physical laws as a conveyance pipe for gas collection (Steinhauser and Fourmont 
2015). 

The gas flow of the minitube is given from its water flow using Equation 1 (Faure and 
Auvin 1995): 
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With: 
Q : flow drained by the minitube (Qw: water flow, Qg: gas flow) 
qp : discharge capacity of the minitube ( (qp)w for water, (qp)g for gas) 
i : hydraulic gradient (iw for water, ig for air) 
α, n : constants 
ρ : density (ρw for water, ρg for gas) 
 
Compared to water, this ratio is about 28 for air, 22 for CO2 and 37 for CH4. 

From Faure et al, 1993, the maximum water head in the minitube function of the 
collected flow per unit area is given by equation 2: 
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With: 
Δh  : water head (water column); 
d : distance between the minitubes 
F : flow of liquid collected per unit area 
 

 dLFQw ××=  (3) 

 
Then using Equation 1 and Equation 3 in Equation 2, the head loss PΔ  in the minitube is given 
by: 
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Lymphea software combines these equations and is used to determine the flow of gas 

collected by minitube blanket function of the length of the horizontal LFG collector and the 
vacuum applied.  This software has been developed by LIRIGM (Laboratoire Interdisciplinaire 
de Recherche Impliquant la Géologie et la Mécanique) from the University of Grenoble, France 
and validated by large scale tests. It can be obtained from the minitube blanket manufacturer.  
 
COMPARISON TO A TRADITIONAL TRENCH 
 
Between September 2015 and March 2016, the performance of minitube blanket and traditional 
horizontal LFG collector were tested side by side in the same 245 m (800-ft) refuse trench at 
Cedar Hills Regional Landfill, located in Maple Valley, Washington (Ghofrani 2016).  The 
traditional LFG collector was comprised of a 150 mm (6-inch) HDPE pipe with six 13 mm (1/2-

inch) perforations, 60° apart, and 150 mm (6-inch) on center.  The minitube blanket comprised of 
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GREENHOUSE GAS EMISSIONS  
 
The use of minitube blanket in replacement of granular material permits to reduce GHG 
emissions up to 87% eq. CO2 with equivalent hydraulic performances (Durkheim and Fourmont, 
2010). 

In the specific case of horizontal LFG collection, table 1 presents the equivalent CO2 
emissions per linear meter for the minitube blanket considering a distance from the manufacturer 
to the landfill site of 2000 km (1240 miles). 
 

Table 1  kg CO2 eq. emissions per linear meter for the minitube blanket. 

  quantity unit Kg CO2 eq./lm
EXCAVATION WORK  

Waste density 1.5 tons/m3  
Trench height 0.5 meters  

Soil extraction for 1 lm 3 tons  
Soil extraction using machinery  

lm of trench per day 200 lm/day  
Tons of soil extracted per hour 85.7 tons  

Fuel consumption per hour 40 liters  
Fuel consumption for 1 lm 1.4 liters 4.12

Soil extraction/application  
Labour costs per hour 30 dollars   

Number of workers 2   
Dollars for services for 1 lm 3.15 dollars 0.12

Minitube Blanket   
Name of product DRAINTUBE 500P LFG4   

Weight per lm 3.39 kgs 11.33
Transport to the site 

Distance to worksite 2000 kms one way
Transport of products 6.77 tons.kms 1.74

Application of the product on site using machinery
lm applied in 1 hour 75 lm   

Fuel consumption per hour 20 liters   
Fuel consumption per lm 0.27 liters 0.79

Product application (labour)   
Labour costs per hour 30 dollars   

Number of workers 3   
Dollars for services per lm 1.2 dollars 0.04

 TOTAL 18.14
 

In comparison, the calculation of equivalent CO2 emissions per linear meter for a 0.9 m 
(3-ft) wide by 2 m (6.5-ft) deep trench filled with aggregates surrounding a 150 mm (6-inch) 
diameter perforated HDPE pipe is presented in the table 2. 
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Table 2  kg CO2 eq. emissions per linear meter for a 0.9 m x 2 m horizontal trench. 
 

 Quantity Unit Kg CO2 eq./lm
EXCAVATION WORK  

Soil density 1.5 tons/m3  
Trench height 2 meters  
Trench width 0.9 meters  

Soil extraction for 1 lm 2.7 tons  
Soil extraction using machinery  

lm of trench per day 70 lm/day  
Tons of soil extracted per hour 27 tons  

Fuel consumption per hour 40 liters  
Fuel consumption for 1 lm 4 liters 11.77

Soil extraction/application   
Labour costs per hour 30 dollars   

Number of workers 2   
Dollars for services for 1 lm 6 dollars 0.22

QUARRY GRAVEL   
Gravel density 1,8 tons/m3   
Trench height 2 meters  
Trench width 0.9 meters  

Tons of gravel extracted for 1 lm 3.2 tons 32.40
Transport of gravel       

distance from quarry to worksite 15 kms one way  
Number of kms for 1 lm 2.43 kms 2.62

Application of gravel using site machinery 
Tons of gravel applied per hour 13.5 tons   

Fuel consumption per hour 40 liters   
Fuel consumption for 1 lm 9.6 liters 28.25

Application of gravel   
Labour costs per hour 30 dollars   

Number of workers 2    
Dollars for services for 1 lm 14.4 dollars 0.53

COLLECTOR PIPE   
Diameter 150 mm   

Weight per lm 1.413 kg 3.37
Transport from manufacturer to worksite

Distance to worksite 50 kms   
Transport of products 0,070 Tons/km 0.02

Product application (labour)   
lm of pipe installed per hour 10 lm  

Labour costs per hour 30 dollars   
Dollars for services per lm 3 dollars 0.11

 TOTAL 79.29
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The calculations were carried out using the “carbon footprint” method developed by 
ADEME.  The use of the minitube blanket offers a considerable reduction of CO2 emissions of 
77% for the same or better performance.  It represents a saving greater than 60 kg CO2 eq. per 
linear meter (more than 18 kg CO2 eq. per linear foot) of horizontal LFG collector. 
 
CONCLUSION 
 
LFG collection has never been such a tremendous concern than nowadays in the waste 
management industry.  Being able to efficiently collect landfill gas will help landfill owners-
operators and municipalities to increase their revenue by recycling the methane and to reduce the 
negative impacts like odors and greenhouse gas generation.  Trenches, gravel, pipes and 
geotextiles were used since decades to maximize the collection efficiency.  Solutions now do 
exist to largely improve the management of LFG as a “natural and free” resource.  One of them 
is the minitube blanket technology which offers a more flexible solution with an enhanced and 
controlled flow capacity, an adapted vacuum efficiency, an important redundancy while 
drastically reducing costs and GHG emissions during construction as well as avoiding air space 
lost occurred while trenching into the waste. 
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